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Abstract. Consider a linear program with uncertain objective coefficients, for which we have a
Bayesian prior. We can collect information to improve our understanding of these coefficients, but
this may be expensive, giving us a separate problem of optimizing the collection of information to
improve the quality of the solution relative to the true cost coefficients. We formulate this information
collection problem for linear programs for the first time, and derive a knowledge gradient policy which
finds the marginal value of each measurement by solving a sequence of LPs. We prove that this policy
is asymptotically optimal, and demonstrate its performance on a network flow problem.

Key words. optimal learning, stochastic linear programming, ranking and selection, knowledge
gradient

AMS subject classifications. 90C05, 90C15, 90C31

1. Introduction. Consider the standard form of a linear program, given by

V (c) = maxx cTx
s.t. Ax = b

x ≥ 0,
(1.1)

and suppose that the vector c of objective coefficients is unknown. However, we have
certain initial information about the problem that allows us to construct a Bayesian
prior around c. Thus, we view c as a random variable whose distribution represents
the uncertainty in our beliefs. We also have the ability to make noisy measurements of
individual coefficients of c. Each measurement provides new information that can be
used to update and improve our beliefs about the objective coefficients. Measurements
are assumed to be time-consuming and expensive; we can choose any coefficient to
measure at any time, but the total budget allocated for measurements is finite. How-
ever, our beliefs about different coefficients may be correlated, meaning that a single
measurement could potentially provide useful information about more than one com-
ponent of c. Our problem is to determine which coefficients to measure in order to
come as close as possible to the optimal solution of the true LP in (1.1). Our decision
at each time step is informed by what we have learned from prior measurements.

In general, optimal learning problems [44] arise when we are faced with an op-
timization problem with unknown parameters, but we are able to learn the values
of these parameters through experiments. The present paper assumes that the orig-
inal optimization problem is a linear program, and studies the efficient collection of
information when this underlying LP has unknown objective coefficients. Examples
of linear programming problems potentially involving optimal learning include the
following:

1. Logistics. Network flow models are used to design shipment routes and sched-
ules in supply chain management [24]. In global operations, such models are
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subject to much greater uncertainty about the reliability of suppliers in de-
veloping economies [52, 53]. Signing a contract with a vendor allows us to
learn about the vendor’s service reliability through the costs we incur. Trying
one vendor may teach us about other vendors in the same region (delays may
be due e.g. to transportation and infrastructure problems).

2. Marketing and production. A production problem can be written as a lin-
ear program maximizing profit subject to resource constraints. The profit
margins for new products are uncertain, and the exact optimal production
strategy is unknown. However, we can run test markets (see [14] and the
references therein on testing methods and strategies) to obtain improved es-
timates for some products. Each test market costs both time and money, and
so only a small number of tests can be conducted.

3. Agriculture. In agricultural planning, linear programming can be used to
obtain optimal crop rotations [17, 30]. The exact yield from planting certain
fields is unknown, though prior estimates can be constructed via regression
techniques on historical data. We can obtain new information through soil
analysis on different fields. In particular, if analysis of one field suggests that
crop yields there may be higher than expected, we might believe that crop
yields from nearby fields may also be higher.

The basic idea of a linear program with stochastic parameters has been studied in
operations research since [15] and the early theoretical work by [31, 40]. This problem
has also been considered by the closely related field of stochastic programming; see
[39], [34], [9] or [46] for an introduction. However, stochastic programming typically
adopts the philosophy of classical stochastic optimization, with a fixed distribution
for the unknown parameters. Once a distribution is specified, the solution is often
approximated; see e.g. [8] for a formulation where the problem is solved repeatedly
over many time periods. By contrast, we allow the the distribution of the unknown
parameters to evolve over time due to the additional dimension of sequential learning.

Sequential optimal learning has been widely studied, but mostly for very simple
underlying optimization models. In ranking and selection [3, 36, 37] and multi-armed
bandit problems [2, 5, 26], there is a finite set of alternatives with unknown values, and
the optimization consists of simply choosing the alternative with the highest value.
More recent work such as [35] uses an empirical approach to weigh statistical and
optimization considerations. A recent study by [48] considered a learning problem
with a more complex optimization component, namely a shortest-path problem on
a graph. Essentially, this is a special case of the problem posed in this paper: we
now measure a single objective coefficient with the goal of learning about the optimal
solution to the entire LP. We also use a more general learning model incorporating
correlations into the Bayesian belief structure. Our goal is to bridge classical mathe-
matical programming with optimal learning through a rigorous formula relating the
value of learning about c to our eventual decision in the LP.

We approach the problem using the method of knowledge gradients (KG), orig-
inally developed by [28] and [29], and later studied by [20], in the context of the
simple ranking and selection problem. In this approach, each measurement is cho-
sen to maximize the expected value of information that can be collected at a given
time step. The initial work on KG considered ranking and selection with indepen-
dent Gaussian priors. It was found, however, that the KG concept can be used as
a general methodology for learning problems, potentially involving more complicated
statistical models such as unknown measurement noise [12], or correlated beliefs [21],
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or linear belief models [42]. Other learning problems where KG algorithms have been
studied include multi-armed bandits [47, 49], information collection on a graph [48],
and Markov decision processes with unknown transition probabilities [50].

In the problem of learning in an LP, the KG algorithm consists of measuring
the objective coefficient that yields the greatest expected improvement in our beliefs
about the optimal value of the LP. Thus, the primary computational challenge is to
find the expected value of the future LP that we will obtain after the measurement
is completed. Conditionally, this future problem can be written as a parametric LP
with a single stochastic parameter. Parametric linear programming typically considers
deterministic problems [1, 22, 41], but the problem of computing the expectation can
be viewed from the perspective of LP sensitivity analysis. Much of the work in
sensitivity analysis (e.g. [32, 54]) concerns itself with finding a range in which a single
optimal solution will remain optimal. We adapt the technique of [25] to compute
the exact expected value of the parametric LP. This computation requires us to solve
a sequence of LPs; the computational cost is potentially high, although numerical
results suggest that exact computation adds significant value over approximations.

This paper makes the following contributions: 1) We present a new class of
optimal learning problems where information is sequentially collected to improve a
Bayesian belief about the optimal value of an LP. We use a multivariate Gaussian
learning model which allows a single measurement to provide information about mul-
tiple unknown parameters of the LP. Section 2 describes this model. 2) We derive,
in Section 3, a knowledge gradient algorithm for this problem class. The algorithm
computes the expected value of information exactly, through an elegant synthesis of
concepts from optimal learning, stochastic linear programming, and sensitivity anal-
ysis. 3) We prove, in Section 4, the asymptotic optimality of the KG algorithm as
the number of measurements becomes large. 4) We present, in Section 5, numerical
examples demonstrating the performance of the algorithm on a minimum-cost flow
problem.

2. Mathematical model. We assume that the feasible region A defined by
Ax = b and x ≥ 0 is bounded. The optimal value of the LP in (1.1), for a fixed
M -vector c of objective coefficients, is denoted by V (c). Also let x∗ (c) represent the
optimal solution of the LP, that is, the value of x that achieves the value V (c). If
there are multiple optimal solutions, we can let x∗ (c) be an arbitrary point in this
set without loss of generality. The dual of the LP is given by

V (c) = miny bT y
s.t. AT y − s = c

s ≥ 0.
(2.1)

By strong duality, the optimal value of the dual for fixed c remains V (c). We can
let y∗ (c) and s∗ (c) represent the optimal dual solution as a function of the objective
coefficients.

Denote by ctrue the true objective function, which is unknown to us. We adopt
the Bayesian philosophy, and take ctrue to be a random vector whose distribution
reflects the decision-maker’s beliefs and uncertainty about the objective coefficients.
We begin with a multivariate Gaussian prior on ctrue, given by ctrue ∼ N

(
c0,Σ0

)
.

We can improve these estimates by making N sequential measurements of individ-
ual objective coefficients. When we choose to measure the jth coefficient, we make
a noisy observation ĉj ∼ N

(
ctruej , λj

)
of the true value. We assume that the mea-

surements are conditionally independent given the sequence of measurement decisions
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j0, ..., jN−1. We also assume that the noise variance λj is known, though we allow it
to depend on j.

Each observation is used to update our beliefs about ctrue. Denote by Fn the
sigma-algebra generated by our first n choices of individual components of ctrue, as
well as the observations we made as a result. Because the measurements and our prior
beliefs all follow Gaussian distributions, the conditional distribution of ctrue given Fn
is also multivariate Gaussian [16]. Let IEn = IE (· | Fn) represent the conditional expec-
tation operator given Fn. Then, we can define a vector cn = IEn (ctrue) representing
our beliefs about ctrue “at time n,” that is, immediately after exactly n measurements
have been made. Similarly, let Σn denote the conditional covariance matrix of ctrue

at time n. It can be shown [21, 23] that

cn+1 = cn +
ĉn+1
jn − cnjn

λjn + Σnjnjn
Σnejn , (2.2)

Σn+1 = Σn −
Σnejne

T
jnΣn

λjn + Σnjnjn
, (2.3)

where jn is the (n+ 1)st coefficient chosen for measurement, and ejn is a vector of
zeros with only the jnth entry equal to 1. In (2.2) and (2.3), and further on throughout
the paper, cnj denotes the jth component of the vector cn, whereas Σni,j refers to the
(i, j)th entry of the matrix Σn.

In practice, λj is not known, and would have to be estimated from data (perhaps
in a first stage of sampling). However, within our learning algorithm, assuming λj to
be known greatly simplifies computation, while retaining the key feature of correlated
beliefs and greatly increasing the power of a single measurement. Current work on
learning with unknown sampling noise [11, 12] is mostly limited to independent beliefs.

Because we start with a multivariate prior, with correlations in our beliefs, a single
measurement can potentially change our beliefs about the entire objective vector.
Together, the vector cn and the matrix Σn completely characterize our distribution
of belief at time n. We can refer to these parameters as the knowledge state

kn = (cn,Σn) .

If we choose to measure the jth coefficient at time n, we can write

kn+1 = Kmodel
(
kn, j, ĉn+1

j

)
where the transition function (or “system model”) Kmodel is described by (2.2) and
(2.3). The knowledge state encodes all the information that is available to us when
we make our measurement decision at time n.

As in [48], our problem can be divided into two phases. First, in the learning
phase, we sequentially make measurement decisions j0, ..., jN−1. A learning policy π
is a sequence of decision rules Jπ,0, ..., Jπ,N−1, where each Jπ,n is a function mapping
the knowledge state kn to an index in the set {1, ...,M}. Thus, a policy tells us what
to measure in any possible circumstance. After all N measurements have been made,
we must commit to a final decision (e.g. production strategy or agricultural plan)
based on our final beliefs kN . This is known as the implementation phase. This final
implementation decision is represented by a function χ mapping the final knowledge
state kN to a point in the feasible region A. Since χ is also a rule for making decisions
rather than a fixed decision, we refer to it as an implementation policy.
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We assume that the decision-maker is risk-neutral and seeks to maximize the value
of the implementation decision in expectation. This objective (not to be confused with
the objective function of the underlying LP) can be written as

sup
π

sup
χ

IEπ
(
ctrue

)T
χ
(
kN
)

. (2.4)

The notation IEπ denotes a conditional expectation given that jn = Jπ,n (kn) for all
n, that is, the policy π is used for each measurement. The implementation policy

is chosen to maximize the expectation of the true objective value (ctrue)
T
χ over all

possible outcomes of kN and ensuing implementation decisions χ
(
kN
)
.

Risk-neutrality is a standard assumption in optimal learning models [13, 16, 26],
which often use a dynamic programming formulation to characterize the optimal pol-
icy. We retain the same assumption, and focus on integrating linear optimization into
this framework. Under risk-neutrality, (2.4) can be simplified by replacing the imple-
mentation policy χ

(
kN
)

with x∗
(
cN
)
, the solution obtained by simply plugging our

final beliefs cN into (1.1). The value of the LP with objective vector cN is generally
not the same as the expected value of the stochastic LP with the true objective vector
ctrue; see [40] for a study of this issue and some conditions under which equality does
hold. In our setting, these quantities are equal in expectation over the outcomes of
the measurements under the same learning policy. At the final time N , the solution
x∗
(
cN
)

is the best possible implementation decision: by maximizing our final guess
of the optimal value, we also maximize (in expectation) the true objective value.

Theorem 2.1. supπ supχ IE
π (ctrue)

T
χ
(
kN
)

= supπ IE
πV
(
cN
)

.
The proof is technical in nature, and can be found in the Appendix. Due to

Theorem 2.1, the problem formulated in (2.4) reduces to choosing a policy π for
making measurements during the learning phase, and (2.4) can be rewritten as

sup
π

IEπV
(
cN
)

. (2.5)

Our next result allows us to place a global upper bound on the objective value in
(2.5). This bound will be used later in Section 4 to show the asymptotic optimality
of the KG policy proposed in Section 3.

Proposition 2.2. For all n and all knowledge states kn = (cn,Σn),

V (cn) ≤ IEnV
(
ctrue

)
almost surely. (2.6)

Proof. The optimal value function V is convex in c (concave for minimization
problems; see e.g. [33], Lemma 5). Applying Jensen’s inequality together with the
definition of cn, we obtain

V (cn) = V
(
IEnctrue

)
≤ IEnV

(
ctrue

)
,

as required.
Corollary 2.3. For all π,

IEπV
(
cN
)
≤ IEV

(
ctrue

)
,

that is, there is a global upper bound on the objective value achieved by any policy.
Proof. Taking the expectation of both sides of (2.6) yields IEπV

(
cN
)
≤ IEπV (ctrue)

for any policy π. However, ctrue does not depend on the policy π, whence IEπV (ctrue) =
IEV (ctrue) for all π, and the desired result follows.
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The optimal learning policy π∗ that maximizes (2.5) can be characterized using
dynamic programming notation. The objective value achieved by following the opti-
mal learning policy from time n onward can be described using a form of Bellman’s
equation [4] adapted for learning problems, given by

V∗,n (kn) = max
j

IEnj V∗,n+1
(
Kmodel

(
kn, j, ĉn+1

j

))
, (2.7)

V∗,N
(
kN
)

= V
(
cN
)

. (2.8)

The notation IEnj denotes an expectation given Fn and the decision to measure the jth
coefficient at time n. If there are no measurements remaining, we make the optimal
implementation decision x∗

(
cN
)
. Otherwise, we make the decision that puts us in

the best position for following the optimal policy starting at time n+ 1.
Although it is conceptually useful to characterize the optimal learning policy in

this way, the dynamic program given by (2.7) and (2.8) is computationally intractable,
because the knowledge state kn is multi-dimensional and continuous. In the next
section, we propose a heuristic learning policy that yields a computable algorithm.

3. The knowledge gradient algorithm. The knowledge gradient (KG) con-
cept was originally advanced by [29] and later developed by [10], [11] and [20] for
the ranking and selection problem. The KG approach consists of a one-period look-
ahead, viewing each time period as if it were the last, and making the measurement
that would be optimal under those circumstances. In our problem, the optimal mea-
surement decision at time N − 1 is given by

J∗,N−1
(
kN−1

)
= arg max

j
IEN−1
j V

(
cN
)

. (3.1)

Equivalently, (3.1) can be written in terms of the difference

J∗,N−1
(
kN−1

)
= arg max

j
IEN−1
j

(
V
(
cN
)
− V

(
cN−1

))
,

because V
(
cN−1

)
is FN−1-measurable and has no effect on the argmax.

The KG decision rule is given by

JKG,n (kn) = arg max
j
νKG,nj (3.2)

where

νKG,nj = IEnj
(
V
(
cn+1

)
− V (cn)

)
. (3.3)

Under the KG policy, we always measure the coefficient that yields the greatest ex-
pected improvement between our current estimate V (cn) of the optimal LP value,
and the future estimate V

(
cn+1

)
that will result from the measurement. The term

“knowledge gradient” arises because the expected improvement is written as a differ-
ence. Observe that, by definition, KG is the optimal learning policy if N = 1. Also
note that JKG,n only depends on n through kn, and thus we can drop the time index
n from the decision rule.

At time n, the quantity V (cn) can be found by solving a deterministic LP with
objective vector cn. However, the quantity IEnj

(
V
(
cn+1

))
is the expected value of

a linear program with stochastic parameters, since cn+1 is random at time n. The
remainder of this section explains how this quantity can be computed exactly.
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3.1. Derivation. From [21], we know that the conditional distribution of cn+1,
given Fn as well as the decision to measure j at time n, can be expressed by the
equation

cn+1 = cn +
Σnej√
λj + Σnjj

· Z,

where Z ∼ N (0, 1). Thus, we can write

IEnj V
(
cn+1

)
= IEV

(
cn +

Σnej√
λj + Σnjj

· Z

)
.

For a fixed value z of Z, the expression inside the expectation can be rewritten as

V
(
cn + z∆cnj

)
= maxx

(
cn + z∆cnj

)T
x

s.t. Ax = b
x ≥ 0,

(3.4)

where

∆cnj =
Σnej√
λj + Σnjj

.

The LP in (3.4) is a perturbed version of (1.1). The perturbation is random (and
follows a standard normal distribution), and the expected value of the perturbed LP
is given by

IEV
(
cn + Z∆cnj

)
=

∫ ∞
−∞

V
(
cn + z∆cnj

)
φ (z) dz

with φ being the standard normal pdf. Now observe that∫ ∞
−∞

V
(
cn + z∆cnj

)
φ (z) dz =

∫ ∞
−∞

(
cn + z∆cnj

)T (
x∗
(
cn + z∆cnj

))
φ (z) dz.

The quantity
(
cn + z∆cnj

)T (
x∗
(
cn + z∆cnj

))
is a piecewise linear function of z. This

is discussed by [25], but can also be seen from the following. If z is inside a cer-
tain range, the optimal solution x∗

(
cn + z∆cnj

)
will remain the same, and the value(

cn + z∆cnj
)T (

x∗
(
cn + z∆cnj

))
will be linear in z within that range. Figure 3.1 gives

an example in two dimensions. The red lines represent the level curves of the objective
function. Varying z has the effect of rotating these curves. For small values of z, the
tangent point does not change; it will only change once the perturbed level curves
become parallel to one of the faces of the feasible region.

The value of z for which x∗
(
cn + z∆cnj

)
does not change is known as the invariant

support set. Thus, the expectation IEV
(
cn + Z∆cnj

)
can be rewritten as a sum of

integrals over all possible invariant support sets. We can let −∞ = z1 < z2 < ... <
zI =∞ be a finite set of points such that x∗

(
cn + z∆cnj

)
is constant for z ∈ (zi, zi+1).

Let xi be the optimal solution of the LP for z ∈ (zi, zi+1). Then,

IEV
(
cn + Z∆cnj

)
=
∑
i

∫ zi+1

zi

(
cn + z∆cnj

)T
xiφ (z) dz

=
∑
i

(cn)
T
xi

∫ zi+1

zi

φ (z) dz +
∑
i

(
∆cnj

)T
xi

∫ zi+1

zi

zφ (z) dz (3.5)

=
∑
i

(cn)
T
xi (Φ (zi+1)− Φ (zi)) +

∑
i

(
∆cnj

)T
xi (φ (zi)− φ (zi+1))(3.6)
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(a) (b)

Fig. 3.1. Example of an LP with two decision variables x1 (hor. axis) and x2 (vert. axis),
with a polyhedral feasible region (shaded). The dashed lines represent level curves of the perturbed
objective function for two different values of z. The optimal solution (circled) remains constant for
a range of values of z.

with Φ being the standard normal cdf. The first sum in (3.5) requires integrating
the density of z over intervals, yielding the differences Φ (zi+1)−Φ (zi) in (3.6). The
second sum in (3.5) can be computed by observing that

∫∞
zi
zφ (z) dz = φ (zi).

The sum of integrals in the first line of (3.6) recalls a similar expression in [31],
though that study did not consider the issue of computation. We can write this more
concisely as

IEV
(
cn + Z∆cnj

)
=
∑
i

ai (Φ (zi+1)− Φ (zi)) + bi (φ (zi)− φ (zi+1))

where ai = (cn)
T
xi and bi =

(
∆cnj

)T
xi. Using the analysis of [21], we can rewrite

this as

IEV
(
cn + Z∆cnj

)
=
(

max
i
ai

)
+
∑
i

(bi+1 − bi) f (− |zi|)

where f (z) = zΦ (z) + φ (z). Now observe that maxi ai = maxi (cn)
T
xi. For any

value of z, including z = 0, we can find i such that the point xi maximizes cn + z∆cnj
over the feasible region. Taking z = 0, this means that there is a point xi satisfying
xi = arg maxx∈A (cn)

T
x, whence

max
i

(cn)
T
xi = max

x
(cn)

T
x = V (cn) ,

whence (3.3) becomes

νKG,nj =
∑
i

(bi+1 − bi) f (− |zi|) . (3.7)

The problem of computing the KG factor of the jth coefficient thus reduces to the
problem of finding the breakpoints zi of the piecewise linear function, as well as the
corresponding optimal solutions xi. We now present an algorithm for finding these
quantities.
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3.2. Computation. We will compute the breakpoints zi iteratively by starting
with x∗ (cn), the optimal solution to (3.4) when z = 0, and solving two sequences of
LPs, one where z increases from zero, and one where z decreases. We construct these
sequences by adapting the procedure developed for LP sensitivity analysis by [25].

The easiest way to visualize the procedure is to interpret it as moving along a
sequence of adjacent extreme points of the feasible region A, with each extreme point
xi being optimal for z ∈ (zi, zi+1). For greater clarity, let us suppose that all LPs
in this section are solved using the simplex method, so that the optimal solution will
always be a corner point. At the end of this section, we will briefly discuss how this
supposition can be relaxed. For now, however, we simply note that it is not necessary
for the algorithm, and is included purely to make our presentation clearer.

We also note that all computations described in this section are made at time n.
While cn = IEnctrue is a random vector, it is Fn-measurable, and so its exact value is
known at time n. Thus, our algorithm views cn as a deterministic quantity.

Recall that x∗ (cn) solves (3.4) for z = 0. First, we determine whether zero is
itself a breakpoint of the piecewise linear function. This can be done by solving two
LPs

z− = miny,s,z z
s.t. AT y − s− z∆cnj = cn

x∗ (cn)
T
s = 0

s ≥ 0,

(3.8)

and

z+ = maxy,s,z z
s.t. AT y − s− z∆cnj = cn

x∗ (cn)
T
s = 0

s ≥ 0.

(3.9)

It is shown in [45] that these two problems find the smallest and largest values of
z, respectively, for which x∗ (cn) is still an optimal solution of (3.4). The feasible
region in each problem merely ensures that there is a feasible solution of the dual of
(3.4) that maintains complementary slackness with x∗ (cn), meaning that x∗ (cn) is
optimal. If z− < 0 < z+, then zero is not a breakpoint, but the numbers z−, z+ are.
In this situation, cn corresponds to the tangent line in Figure 3.1.

We will now build one sequence of breakpoints monotonically decreasing from z−,
and another sequence monotonically increasing from z+. We handle the two sequences
separately, since one will involve minimizing z over invariant support sets, as in (3.8),
whereas the other will maximize, as in (3.9). However, this is the only difference
between the two types of computations. We first discuss the decreasing sequence,
starting with z−. As before, Figure 3.2 provides a visual aid in two dimensions.

Suppose that z− = 0. Then, zero is a breakpoint, and the level curve of cn is
tangent to a face of the feasible region, as in Figure 3.2(a). In this case, there are
multiple optimal extreme-point solutions of (3.4) at z = 0, of which one is x∗ (cn)
itself, and another is the optimal solution to the LP

Vl (c
n) = minx

(
∆cnj

)T
x

s.t. Ax = b

(s∗ (cn))
T
x = 0

x ≥ 0.

(3.10)
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(a) (b)

Fig. 3.2. Illustration of the relationship between x∗ (cn), xl (cn) and zl (cn). The extreme point
xl (cn) is adjacent to x∗ (cn) and is optimal for z ∈ (zl (cn) , 0).

Let xl (c
n) denote this point. The quantity

(
∆cnj

)T
(xl (c

n)) is precisely the left deriva-
tive of the piecewise linear function at the breakpoint z = 0. (The right derivative is
x∗ (cn) itself.) Among all the corner points that maximize (3.4) at z = 0, xl (c

n) is
located furthest in the direction of rotation of the level curves. It will continue to be
optimal for z ∈ (zl, 0) for some other breakpoint zl < 0.

This next breakpoint zl is the optimal value of the LP

zl (c
n) = miny,s,z z

s.t. AT y − s− z∆cnj = cn

(xl (c
n))

T
s = 0

s ≥ 0.

(3.11)

The LP in (3.11) is almost identical to that in (3.8), with the only difference being that
x∗ (cn) is replaced by xl (c

n). Figure 3.2 gives a visual illustration of the relationship
between the solutions x∗ (cn) and xl (c

n), and the breakpoint zl (c
n).

It is now clear that we can iterate (3.10) and (3.11) to find a descending sequence
of breakpoints. We replace cn by cn + zl∆c

n
j and x∗ (cn) by xl (c

n), then solve (3.10)
to find a new corner point, then solve (3.11) to find the next breakpoint. The exact
details are described in Step 3, Figure 3.3.

To find breakpoints greater than zero, we follow the same procedure, but maximize
instead of minimizing. If z+ = 0, then zero is still a breakpoint, and there are still
multiple optimal extreme-point solutions of (3.4) at z = 0. This time, the next
extreme point is the optimal solution to

Vu (cn) = maxx
(
∆cnj

)T
x

s.t. Ax = b

(s∗ (cn))
T
x = 0

x ≥ 0.

(3.12)

We let xu (cn) be the value of x that solves (3.12), and find the next breakpoint zu > 0
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1: Solve (3.4) with z = 0 to obtain x∗ (cn), y∗ (cn) and s∗ (cn).
2: Solve the LPs given by (3.8) and (3.9), and let z−, z+ be their optimal values.

2a: If z− < 0 < z+, let z̄ = (z−, z+) and x̄ = (x∗ (cn)).
2b: Otherwise, let z̄ = (0) and let x̄ be the empty set.

3: While min (z̄) > −∞, do the following:
3a: Let c′ = cn + min (z̄) ·∆cnj .
3b: Find Vl (c

′) and zl (c
′) using (3.10) and (3.11).

3c: Update z̄ ← (min (z̄) + zl (c
′) , z̄) and x̄← (xl (c

′) , x̄).
4: While max (z̄) <∞, do the following:

4a: Let c′ = cn + max (z̄) ·∆cnj .
4b: Find Vu (c′) and zu (c′) using (3.12) and (3.13).
4c: Update z̄ ← (z̄,max (z̄) + zu (c′)) and x̄← (x̄, xu (c′)).

Fig. 3.3. Algorithm for finding the vector z̄ of breakpoints and the set x̄ of corresponding
invariant solutions.

by computing

zu (cn) = maxy,s,z z
s.t. AT y − s− z∆cnj = cn

(xu (cn))
T
s = 0

s ≥ 0.

(3.13)

Step 4 of Figure 3.3 shows how this procedure can be iterated. By running the
algorithm in Figure 3.3, we will obtain a vector z̄ of the breakpoints, together with a
set x̄ containing the corresponding invariant solutions. These quantities can then be
used to compute the KG formula given in (3.7).

The algorithm is guaranteed to terminate in finite time, because there is only a
finite number of extreme points (see [6], Corollary 2.1). Furthermore, the breakpoints
are already returned sorted. However, the algorithm can be computationally expen-
sive, requiring us to solve a sequence of linear programs for every coefficient of the
objective function at every time step n. The advantage is that the KG factor νKG,nj

is computed exactly.
We now briefly remark on the effect of allowing optimal solutions that are not

corner points. In higher dimensions, it may be possible for (3.10) and (3.12) to produce
points that are on the boundary of a face of A, but not necessarily on a corner. For
example, in three dimensions, an interior-point method may cause (3.10) to yield a
point xl on the line segment connecting two corners of A. However, for any such point,
we can find a corner point x̄l that also optimizes (3.10), and also the unperturbed
problem, since (3.10) requires complementarity with s∗ (cn). The constraint xTl s = 0

in (3.10) can be replaced by
(
cn + z∆cnj

)T
xl = bT y, which in turn can be replaced by(

cn + z∆cnj
)T
x̄l = bT y, since (cn)

T
xl = (cn)

T
x̄l and

(
∆cnj

)T
xl =

(
∆cnj

)T
x̄l by the

preceding discussion. Thus, (3.11) will yield the same solution regardless of whether
or not xl is a corner point.

Observe that, in the above analysis, the procedure for calculating breakpoints
is independent of our assumptions on the prior and sampling distributions. These
assumptions come into play only when we plug those breakpoints into (3.7). This
suggests that the algorithm in Figure 3.3 could potentially be applied to other types
of prior distributions on c (e.g. independent gamma priors combined with exponential
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observations, or other conjugate learning models in [16]). However, we focus on
the multivariate Gaussian distribution because it provides an elegant and powerful
framework for modeling correlations in our beliefs.

4. Asymptotic optimality. In this section, we prove that the KG algorithm
laid out in Section 3 possesses the property of asymptotic optimality. The precise
meaning of this property is given in Section 4.1, along with other definitions and
preliminaries required for the proof. The proof itself is given in Section 4.2. It is
based on the convergence analysis of [19]: essentially, we show that the KG policy
avoids getting “stuck” at a knowledge state where some, but not all components of c
are known perfectly. Given infinitely many measurements, KG eventually reaches a
state where all of c is known.

For the purpose of our convergence analysis, we suppose that the feasible region
A can be written as a polyhedron in the form Ax ≤ b, x ≥ 0. We further assume that
this polyhedron has dimension M .

4.1. Preliminaries. We define the space of knowledge states as

K =
{

(c,Σ) | c ∈ RM , Σ ∈ SM+ , Σjj > 0 ∀j
}

,

where SM+ is the space of M×M positive-semidefinite matrices. The space K includes
all possible posterior distributions at all times n. Without loss of generality, we assume
that Σ0 is a full-rank covariance matrix with Σ0

jj > 0 for all j, that is, we do not have
perfect information about any objective coefficient at the beginning. The space K
thus includes all possible mean vectors and covariance matrices that we will observe
over the course of a finite number of measurements. The closure of this space is

K̄ =
{

(c,Σ) | c ∈ RM , Σ ∈ SM+
}

,

which includes all possible legitimate covariance matrices Σ, including those where
Σjj = 0 for some j. Such a knowledge state can be reachable by measuring j infinitely
often.

We define convergence in the space of knowledge states as follows. Suppose that
(kn) is a sequence of knowledge states (cn,Σn) ∈ K̄, and k =

(
c(k),Σ(k)

)
is a knowl-

edge state in K̄. We say that kn → k if cn → c(k) and Σnj,j′ → Σ
(k)
j,j′ for all j, j′. Our

parametrization is different from the mean-value parametrization used in [19]. How-
ever, our definition of convergence in K is equivalent to convergence in the mean-value
parameters. This is because both our sampling density and our posterior density are
multivariate Gaussian, and thus come from an exponential family. It is known (e.g.
from [7]) that, for an exponential family, there is a continuous bijection between the
natural parameters of the distribution, and the mean-value parameters. Thus, every
pair

(
c(k),Σ(k)

)
for k ∈ K corresponds to exactly one set of mean-value parameters.

Furthermore, a sequence in K̄ converges to a point in K̄ if and only if the correspond-
ing sequence of mean-value parameters converges to the mean-value parametrization
of the limit. For our purposes, however, it is much more convenient to work with cn

and Σn, because we use these parameters to define the KG policy.
We now give the meaning of asymptotic optimality. The risk function

R (c, x) = V (c)− (c)
T
x

represents the loss incurred (for a particular choice of the objective coefficients) by
choosing x ∈ A as the implementation decision instead of solving for V (c). The work
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by [19] defines asymptotic optimality as

lim
N→∞

IE
(

min
x

IENR
(
ctrue, x

))
= IE

(
min
x

IE
(
R
(
ctrue, x

)
| ctrue

))
, (4.1)

that is, the minimum-risk decision at time N will achieve the lowest risk possible if
ctrue is perfectly known, in the limit as N → ∞. Every expectation in this section
can be assumed to be under the KG policy.

The left-hand side of (4.1) can be rewritten as

lim
N→∞

IE
(

min
x

IENR
(
ctrue, x

))
= lim
N→∞

IE
(

min
x

IENV
(
ctrue

)
−
(
ctrue

)T
x
)

= lim
N→∞

IE
(
IENV

(
ctrue

)
+ min

x

(
−IEN

(
ctrue

)T
x
))

= lim
N→∞

IEV
(
ctrue

)
− IEmax

x

(
cN
)T
x

= IEV
(
ctrue

)
− lim
N→∞

IEV
(
cN
)

.

Analogously, it can be shown that IE (minx IE (R (ctrue, x) | ctrue)) = 0, whence (4.1)
becomes

lim
N→∞

IEV
(
cN
)

= IEV
(
ctrue

)
. (4.2)

Thus, the meaning of asymptotic optimality is in line with our objective function
in (2.5). The objective value achieved by an asymptotically optimal learning policy
converges to the global upper bound in Corollary 2.3.

The last preliminaries bring concepts from [19] to our LP setting. We define three
functions

h (kn, j) = min
x

IEnR
(
ctrue, x

)
− IEnj

(
min
x

IEn+1R
(
ctrue, x

))
,

g (kn, j) = min
x

IEnR
(
ctrue, x

)
− IEn

(
min
x

IEn
(
R
(
ctrue, x

)
| ctruej

))
,

ḡ (kn) = min
x

IEnR
(
ctrue, x

)
− IEn

(
min
x

IEn
(
R
(
ctrue, x

)
| ctrue

))
.

Each function represents a decrease in risk under different conditions. The function h
is the one-period decrease in risk obtained by measuring the jth objective coefficient
at time n. The function g is the decrease in risk that would be achieved if we were
given the exact value of the jth coefficient after reaching a given knowledge state.
Finally, ḡ represents the decrease in risk achieved if we were given the exact value of
ctrue.

Note that the minimum operators in the definitions of h, g and ḡ are defining
random variables. For example, in the definition of h, let Rn+1

x = IEn+1R (ctrue, x).
For each fixed x, Rn+1

x is is a random variable. Then, R̄n+1 (ω) = minxR
n+1
x (ω)

defines another random variable R̄n+1 whose value on the sample path ω is a minimum
of the realized values Rn+1

x (ω) over the fixed feasible region.
Our last definitions relate these concepts to the notion of convergence. For each

coefficient j, let

Mj =
{
k ∈ K̄ | ∃ (kn) ⊆ K : kn → k, g (kn, j)→ 0

}
be the set of all knowledge states for which we gain nothing (no decrease in risk) by
knowing the exact value of cj . Similarly, let

Bk = {j | k ∈Mj}
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be the set of all such j for the fixed knowledge state k. Finally, let

M∗ =
{
k ∈ K̄ | ∀ (kn) ⊆ K with kn → k, g (kn, j)→ 0 ∀j

}
be the set of all knowledge states for which nothing is gained by knowing all of c
exactly.

4.2. Main result. The work by [19] provides sufficient conditions under which
the asymptotic optimality property from (4.2) holds. We first restate these conditions
in terms of our LP problem.

Theorem 4.1. Suppose that the following conditions hold:
1. (Assumption 1 from [19]) If kn is a sequence of knowledge states with kn → k

and g (kn, j)→ 0 for all j, then ḡ (kn)→ 0 also.
2. (Theorem 1 from [19]) If k /∈M∗, then k has an open neighbourhood U ⊆ K̄

such that

sup
k′∈U

P
(
JKG (k′) ∈ Bk

)
< 1. (4.3)

Then, the KG policy of Section 3 is asymptotically optimal in the sense of (4.2).
The first condition of Theorem 4.1 does not depend on any policy, but rather is a

regularity condition ensuring that our problem is well-behaved. If, in the limit, there
is no benefit from learning the exact value ctruej of any individual coefficient j, then
there should be no benefit from learning the exact value of the entire vector ctrue at
once. The second condition, expressed in (4.3), ensures that the KG policy avoids
getting stuck measuring coefficients whose values are already known.

First condition. We now calculate

h (kn, j) = IEnV
(
ctrue

)
−max

x
(cn)

T
x− IEnV

(
ctrue

)
+ IEnj max

x

(
cn+1

)T
x

= IEnj
(
V
(
cn+1

)
− V (cn)

)
= νKG,nj . (4.4)

Thus, the KG policy as defined in (3.2) and (3.3) maximizes the one-period decrease
in risk. Repeating the same computations as in (4.4), we find that

g (kn, j) = IEn
(

max
x

IEn
((
ctrue

)T
x | ctruej

)
− V (cn)

)
. (4.5)

Because ctruej is correlated with the values of other ctruej′ , we find that

IEn
((
ctrue

)T
x | ctruej

)
=

M∑
j′=1

xj′ IE
n
(
ctruej′ | ctruej

)
= ctruej xj +

∑
j′ 6=j

xj′

(
cnj′ +

Σnj,j′

Σnj,j

(
ctruej − cnj′

))
.

The time-n marginal distribution of ctruej is N
(
cnj ,Σ

n
j,j

)
, whence

IEn
(

max
x

IEn
((
ctrue

)T
x | ctruej

))
= IE

max
x

xj

(
cnj +

√
Σnj,jZ

)
+
∑
j′ 6=j

xj′

(
cnj′ +

Σnj,j′

Σnj,j

√
Σnj,jZ

)
= IE

max
x

M∑
j′=1

cnj′xj′ + xj′
Σnj,j′√

Σnj,j
Z

 .
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It follows that

g (kn, j) = IEV
(
cn + Z∆c̄nj

)
− V (cn)

with ∆c̄nj =
Σnej√

Σnj,j
. Repeating the arguments of Section 3.1, we find that

g (kn, j) =
∑
i

(
b̄i+1 − b̄i

)
f (− |z̄i|) . (4.6)

As before, −∞ = z̄1 < z̄2 < ... < z̄I′ < ∞ is a finite set of points for which
x∗
(
cn + z∆c̄nj

)
is constant for z ∈ (z̄i, z̄i+1), x̄i is the optimal solution of the LP

for z ∈ (z̄i, z̄i+1), and b̄i =
(
∆c̄nj

)T
x̄i.

Proposition 4.2. Suppose that kn is the current knowledge state. Then, g (kn, j) =
0 if and only if Σnj,j = 0. Also, h (kn, j) = 0 if and only if Σnj,j = 0.

Proof. Suppose that Σnj,j = 0. Because the marginal distribution of ctruej given

kn is N
(
cnj ,Σ

n
j,j

)
, it follows that ctruej = cnj almost surely given Fn. Consequently,

the right-hand side of (4.5) is zero.
Suppose now that Σnj,j > 0. Then, g (kn, j) is given by (4.6). We claim that the

right-hand side of (4.6) must be strictly positive. To see this, first observe that the
function f has no zeros on the real line [48]. Furthermore, we have b̄i+1 ≥ b̄i for all i,
so the only way (4.6) can equal zero is if

M∑
j′=1

x̄i,j′Σ
n
j,j′ =

M∑
j′=1

x̄i′,j′Σ
n
j,j′

for all i, i′ ∈ {1, ..., I ′}. It follows that

 x̄1,1 ... x̄1,M 1
... ... ... ...
x̄I′,1 ... x̄I′,M 1




Σnj1
...

ΣnjM
−β

 = 0 (4.7)

for some constant β. However, the polyhedron A is assumed to have dimension M ,
which means that it has exactly M+1 affinely independent extreme points [43]. Thus,
the matrix in (4.7) must contain an invertible M + 1 ×M + 1 submatrix. Because
Σnj,j > 0 by assumption, this submatrix cannot yield zero when multiplied by the
vector in (4.7). We conclude that g (kn, j) = 0 if and only if Σnj,j = 0. The same
argument can be used to show that h (kn, j) = 0 if and only if Σnj,j = 0.

We now state a technical lemma that will be used to verify the first condition of
Theorem 4.1. The lemma will be used to establish certain continuity conditions on
h, g and ḡ, which is crucial to the proof of asymptotic optimality. The proof of the
lemma is given in the Appendix.

Lemma 4.3. Let an and Bn be sequences in RI and RI×I
′
, respectively, such

that an → a and Bni,i′ → Bi,i′ for all i, i′. Define

yn = IEmax
i
ani +

I′∑
i′=1

Bni,i′Zi′ ,

y = IEmax
i
ai +

I′∑
i′=1

Bi,i′Zi′ ,
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where Z1, ..., ZI′ are i.i.d. N (0, 1) random variables. Then, yn → y.
Corollary 4.4. The function h (·, j) is continuous for all j. That is, if kn → k,

then h (kn, j)→ h (k, j).
Proof. Recall that h (kn, j) = IEV

(
cn + Z∆cnj

)
− V (cn). Because any LP always

has a basic optimal solution, V can be rewritten as a finite maximum over extreme
points, that is,

V
(
cn + Z∆cnj

)
= max

i
(cn)

T
xi + Z

(
∆cnj

)T
xi,

which means that the expected value IEV
(
cn + Z∆cnj

)
can be put in the framework

of Lemma 4.3 with I ′ = 1 and

ani = (cn)
T
xi, Bni,1 =

(
∆cnj

)T
xi.

If kn → k, it follows that cn → c(k) and ∆cnj → ∆c
(k)
j for ∆c

(k)
j =

Σ(k)ej√
λj+Σ

(k)
j,j

, and

h (kn, j)→ h (k, j) by Lemma 4.3.
Lemma 4.3 can also be applied to the functions g (·, j) and ḡ. However, in the

case where kn → k and Σ
(k)
j,j = 0, the limit ∆c̄

(k)
j of ∆c̄nj =

Σnej√
Σnj,j

may be undefined.

Observe, however, that
Σn
j,j′√
Σnj,j
≤
√

Σnj′,j′ by the Cauchy-Schwarz inequality. Thus, in

the special case where Σ
(k)
j,j = 0 for all j, ∆c̄nj → 0 and Lemma 4.3 can be applied to

show the continuity of g (·, j) at k.
We can also show that ḡ is continuous at k with Σ(k) = 0. Repeating the compu-

tation from (4.4) once more, we find that

ḡ (kn) = IEnV
(
ctrue

)
− V (cn) .

Observe that the distribution of ctrue given kn can be written as cn + B̃nZ where
Z = (Z1, ..., ZI′) for some finite integer I ′, Z1, ..., ZI′ are i.i.d. N (0, 1) random

variables, and B̃n is an M × I ′ matrix satisfying Σn =
(
B̃n
)(

B̃n
)T

. Again writing

V as a finite maximum over extreme points, we obtain IEnV (ctrue) = IEmaxi (cn)
T
xi+

ZT
(
B̃n
)T

xi. We can put this in the framework of Lemma 4.3 by letting

ani = (cn)
T
xi, Bni,i′ =

M∑
j=1

xi,jB̃
n
j,i′ .

If Σn → 0 componentwise, it follows that B̃n → 0 as well. Our proof of asymptotic
optimality relies on the continuity of g (·, j) and ḡ only at those knowledge states k
for which Σ(k) = 0.

Proposition 4.5. Suppose that kn is a sequence of knowledge states with kn → k,
and g (kn, j)→ 0 for all j. Then, ḡ (kn)→ 0 also.

Proof. By Lemma 9 of [19], we know that 0 ≤ h (kn, j) ≤ g (kn, j) for all n. It
follows that h (kn, j) → 0 for all j. By Corollary 4.4, it follows that h (k, j) = 0 for

all j. Then, by Proposition 4.2, it follows that Σ
(k)
j,j = 0 for all j, whence Σ(k) = 0.

Recall that ḡ (k) = IE(k)V (ctrue) − V
(
c(k)
)
. Because Σ(k) = 0, it follows that

ctrue = c(k) almost surely, whence ḡ (k) = 0. By using the continuity of ḡ at the
particular state k, we have that ḡ (kn)→ ḡ (k), as required.
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Second condition. Proposition 4.5 completes our proof of the first condition
for asymptotic optimality. It remains to show that (4.3) holds for all k /∈M∗.

Theorem 4.6. Let k /∈ M∗. Then, k has an open neighbourhood U ⊆ K̄ such
that

sup
k′∈U

P
(
JKG (k′) ∈ Bk

)
< 1.

Proof. Let k ∈ K̄ −M∗. There are two possibilities: either Bk = ∅, or Bk 6= ∅. If
Bk = ∅, then P

(
JKG (k′) ∈ ∅

)
= 0 for any k′, so we can take U = K̄, which is open

in itself, and (4.3) holds.
Suppose now that k is such that Bk 6= ∅. We argue that h (k, j) = 0 for all j ∈ Bk.

To see this, take j ∈ Bk. It follows that k ∈ Mj . Then there exists a sequence kn of
knowledge states with kn → k and g (kn, j) → 0. It follows that h (kn, j) → 0. By
the continuity of h, it follows that h (k, j) = 0.

Now define

U =

{
k′ ∈ K̄ | max

j∈Bk
h (k′, j) < min

j /∈Bk
h (k′, j)

}
.

This set is open by the continuity of h. We argue that k ∈ U . To see this, observe
that maxj∈Bk h (k, j) = 0. Thus, the only way we can have k /∈ U is if h (k, j) = 0 for

all j. But if this were true, by Proposition 4.2 we would have Σ
(k)
j,j = 0 and g (k, j) = 0

for all j. Then, for every kn → k, we would have g (kn, j)→ 0 for all j, which would
imply that k ∈M∗ by Proposition 4.5. Thus, if k /∈M∗, then k ∈ U .

Finally, for any k′ ∈ U , the definition of U implies that arg maxj h (k′, j) /∈ Bk,
whence we have J

(
XKG (k′) ∈ Bk

)
= 0, and (4.3) holds. We conclude that (4.3)

holds for any k /∈M∗.

5. Numerical examples. We now present a numerical illustration of the per-
formance of the KG method. In many respects, the problem posed in this paper,
of allocating sequential measurements to adaptively learn about cost coefficients in
a linear program, is itself fundamentally new. To our knowledge, the KG policy is
the first approach to be proposed for systematically making measurement decisions
in this problem. Thus, our objective in this section is to illustrate how systematic
measurements via KG lead us to better LP solutions than several baseline policies.

We chose to test the KG policy on a minimum-cost flow problem. This problem
class covers a wide variety of LP applications in logistics and supply chain man-
agement, and also has the advantage that non-trivial test problems can be easily
generated. We used the NETGEN algorithm of [38] to generate a network with 50
nodes and 100 arcs. The network contains 10 supply nodes and 10 demand nodes.
The total flow in the system is 500. The arc costs generated by NETGEN are integers
between 1 and 10. Thus, when converted to the standard form of (1.1), our problem
has 100 constraints and 200 variables.

The arc costs generated by NETGEN were used as our starting prior c0. The
initial covariance matrix Σ0 was created as follows. First, the prior variance of the
cost on arc j was set to Σ0

jj = 2. Second, the correlation coefficient of arcs i and j
was set to 0.25 if those arcs were adjacent. The correlation structure was thus based
on the physical proximity of arcs in the network. In larger networks, it may be desir-
able to consider correlation structures with multiple degrees of correlation, gradually
decreasing the correlation coefficient as the distance between two arcs increases. For
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(a) (b)

Fig. 5.1. Results for heterogeneous-prior experiments: (a) opportunity costs for both policies,
and (b) number of distinct arcs measured by each policy.

the purposes of our demonstration, we consider a simple model where correlations are
determined by adjacency only.

We used the CVX package of [27] to implement the algorithm for finding break-
points given in Figure 3.3. In our implementation, we encountered some numerical
issues. For example, the constraint s∗ (cn)

T
x = 0 in (3.10) and (3.12) occasionally

caused the solver to erroneously report the LP as being infeasible. In this situa-
tion, the equivalent constraint (cn)

T
x = (cn)

T
x∗ (cn) can be used for much more

stable performance [51]. Similarly, the analogous constraints xl (c
n)
T
s = 0 and

xu (cn)
T
s = 0 in (3.11) and (3.13) can be replaced by

(
cn + z∆cnj

)T
xl (c

n) = bT y

and
(
cn + z∆cnj

)T
xu (cn) = bT y.

To evaluate the performance of a learning policy π, we first fix a vector ctrue

representing the true values of the objective coefficients. These true values are used
to generate the measurements ĉn+1

Jπ,n(sn) when we follow the policy π at each time step.

However, the policy does not see the exact values of ctruej . After N measurements,
the opportunity cost incurred by following π is defined as

Cπ = V
(
ctrue

)
−
(
ctrue

)T
x∗
(
cπ,N

)
where cπ,N is our posterior mean at time N , based on the measurements we made
according to π. This is the difference between the true objective value of the solution
x∗
(
cπ,N

)
that is optimal according to our final beliefs under policy π, and the true

optimal value of the LP.

As in [48], we consider two different prior structures. The heterogeneous-prior
approach generates c from the prior distribution N

(
c0,Σ0

)
. This represents a situ-

ation where we have access to accurate historical data, so that our starting estimate
is reasonably good. In the equal-prior approach, the true objective function ctrue is
generated by NETGEN, but all of the components of c0 are equal. We thus have less
starting information; the prior gives us a rough idea of the magnitudes of the costs,
but no way to distinguish between them. We conducted simulations for 100 randomly
generated cost functions of each type. In both sets of experiments, the measurement
noise λj was set to 2 uniformly for all arcs in the network. We compared the KG
policy of Section 3 to three heuristics, briefly described below.
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(a) (b)

Fig. 5.2. Results for equal-prior experiments: (a) opportunity costs for both policies, and (b)
number of distinct arcs measured by each policy.

Variance optimization (Variance). The Variance policy always measures the arc
for which our beliefs have the highest variance. This is analogous to choosing the arc
that minimizes the expected squared error of our prior estimate from the true value
of the objective coefficient.

Approximate look-ahead using Monte Carlo simulation (MC). Due to the signifi-
cant computational cost of evaluating the expectation in (3.3), it is reasonable to ask
whether exact computation contributes value over approximate integration. The MC
policy computes (3.3) approximately by generating sample realizations Z (ω1) , ..., Z (ωK)
from the standard normal distribution and averaging the deterministic calculations
V
(
cn + ∆cnj · Z (ωk)

)
over k = 1, ...,K. The sample size K was chosen to make MC

policy run for roughly the same length of time as the KG policy.
Pure exploration (Explore). The pure exploration policy measures a randomly

chosen arc in each time step.
Figure 5.1(a) shows how the opportunity cost for both policies (averaged over 100

heterogeneous-prior problems) changes with the number of measurements. The KG
policy pulls ahead after about 10 measurements; there is a clear downward trend in
the opportunity cost, indicating that KG finds better solutions as the measurement
budget increases. This empirical result is in line with our asymptotic analysis in
Section 4. Figure 5.1(b) shows the average number of distinct arcs measured by each
policy in both types of experiments. KG measures fewer arcs than other policies,
meaning that there are more arcs that get measured multiple times under KG.

The MC policy exhibits generally the same behaviour as KG, but with noticeable
degradation in performance due to inaccuracies from Monte Carlo sampling. Increas-
ing the sample size can improve performance, but we found that this also greatly
increased computational cost. Although the LP sensitivity analysis procedure used
by KG can potentially visit a large number of extreme points, in practice many of
these solutions are dominated, and will not achieve the maximum in (3.4) for any
value of z. Furthermore, every new solution found by the procedure is adjacent to
the previous one (as in Figure 3.2), and this structure can be exploited to speed up
computation further. Overall, we found that a small sample size K = 10 was enough
to make the MC policy run for as long as KG in this problem.

Figure 5.2 shows analogous results for the equal-prior case. Because the prior
conveys much less information about the true objective function, our initial solution
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Fig. 5.3. Diagram showing decision-making at time 0 under the heterogeneous-prior setup.
Squares represent supply nodes; triangles represent demand nodes. Lines in bold indicate edges with
non-zero flow according to x∗

(
c0
)
. Dashed lines indicate edges with high KG factors.

x∗
(
c0
)

is much worse than in the heterogeneous-prior case. This explains the offset
between KG and the other policies in the first data point (for n = 1): the prior is so
uninformative that the very first measurement contributes a big improvement. The
policies have the same general behaviour as in the heterogeneous-prior case. The MC
policy lags noticeably more in the early stages, but catches up to KG more quickly in
the later stages, reflecting the intuitive idea that it is more important to calculate the
value of information exactly in the early stages, when information is most valuable.

Lastly, Figure 5.3 gives some intuition of how the KG policy selects arcs to mea-
sure. The figure shows a schematic of the network generated for our experiments,
drawn using the Graphviz package [18]. Lines drawn in bold indicate edges with non-
zero flow according to the solution x∗

(
c0
)
, which is believed to be optimal under the

prior. Dashed lines indicate edges with the 10 largest KG factors, calculated using
the initial beliefs c0 and Σ0. Although only one of these edges is actually chosen for
measurement, the figure sheds light on how KG valuates edges in general. We see that
edges with high KG factors are either part of the current shipment schedule (assigned
non-zero flow under the prior), or they are adjacent to such edges. In the latter case,
a small change in our beliefs about an edge is more likely to result in a change to the
overall shipment schedule. For example, the prior ships flow through nodes 35 and 16
to satisfy demand at 45, but there is a lot of uncertainty about whether this is really
a good route, or whether 45 should be used as a transshipment node. Both edges
between 16 and 45 are especially valuable.

These numerical examples indicate that there is a clear benefit by incorporating
the value of information, as defined by the KG logic, into our decision-making. The
empirical evidence shown here reflects the particular problem setting chosen for our
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illustration. However, we feel that these results demonstrate that the KG algorithm
proposed in this paper runs as expected, and produces successively better solutions
to the underlying LP.

6. Conclusion. We have posed a new type of optimal learning problem: solving
an LP with unknown cost coefficients, given finitely many chances to learn about
them through noisy measurements. Our uncertainty about the objective function is
represented by a Bayesian belief structure. We have developed a knowledge gradient
strategy for making measurement decisions efficiently. In the setting of a multivari-
ate Gaussian prior and independent Gaussian measurement errors, the KG approach
provides us with a closed-form expression for the value of information contributed by
a single measurement to our understanding of the underlying LP. This quantity can
be computed exactly by applying techniques from LP sensitivity analysis. We have
shown that this policy is asymptotically optimal, meaning that it learns the true op-
timal value of the LP as the number of measurements becomes large. Our numerical
examples show how, on average, KG gradually leads us to improve our LP solution.

We view this work as a bridge between the fields of stochastic optimization and
optimal learning. Many practical optimization problems are characterized by a high
degree of uncertainty about key model parameters. Whenever approximations are
used to make decisions, we run the risk of making a poor decision by relying on an
inaccurate approximation. It becomes crucial to develop intelligent, systematic strate-
gies for balancing existing approximations with the value of new information that can
improve the approximation. This dilemma is studied extensively in the literature
on optimal learning, but typically for a very simple underlying optimization struc-
ture. We believe that the idea explored in our work, namely the idea of quantifying
and formalizing the value of information in a more general and complex optimization
framework, has a great deal of potential for resolving information collection issues in
many broad classes of stochastic optimization problems.

Appendix. Proofs.

A.1. Proof of Theorem 2.1. By the tower property of conditional expectation,

sup
π

sup
χ

IEπ
(
ctrue

)T
χ
(
kN
)

= sup
π

sup
χ

IEπIEπ,N
(
ctrue

)T
χ
(
kN
)

because IEπ only conditions on the choice of learning policy, whereas IEπ,N conditions
on that as well as Fn. Observe that, because kN is FN -measurable, we have

IEπ,N
(
ctrue

)T
χ
(
kN
)

= χ
(
kN
)T

IEπ,N
(
ctrue

)
=
(
cN
)T
χ
(
kN
)

by the linearity of expected values. Thus, we can write

sup
π

sup
χ

IEπ
(
ctrue

)T
χ
(
kN
)

= sup
π

sup
χ

IEπ
(
cN
)T
χ
(
kN
)

≤ sup
π

sup
χ

IEπ max
x∈A

(
cN
)T
x

= sup
π

IEπ max
x∈A

(
cN
)T
x

= sup
π

IEπV
(
cN
)

. (A.1)



22 I. O. RYZHOV AND W. B. POWELL

The second line is due to the monotonicity of conditional expectations because, for
any outcome ω of the measurements,(

cN (ω)
)T
χ
(
kN (ω)

)
≤ max

x∈A

(
cN (ω)

)T
x.

Thus, we can remove the supremum over χ because the expression inside that supre-
mum no longer depends on the implementation policy.

Now, fix π and let χ′ be defined by χ′
(
kN
)

= x∗
(
cN
)
. Then,

IEπV
(
cN
)

= IEπ
(
cN
)T
χ′
(
kN
)
≤ sup

χ
IEπ
(
cN
)T
χ
(
kN
)

.

It follows that

sup
π

IEπV
(
cN
)
≤ sup

π
sup
χ

IEπ
(
cN
)T
χ
(
kN
)

. (A.2)

Combining (A.1) with (A.2) yields the desired result.

A.2. Proof of Lemma 4.3. We define random variables

Y n = max
i
ani +

I′∑
i′=1

Bni,i′Zi′ , Y = max
i
ai +

I′∑
i′=1

Bi,i′Zi′ ,

and show that Y n → Y in L1. To see this, let ε > 0 and take N such that, for all
n > N , we have |ani − ai| ,

∣∣Bni,i′ −Bi,i′ ∣∣ < ε for all i, i′. Then, for n > N ,

IE |Y n − Y | = IE

∣∣∣∣∣∣max
i

ani +

I′∑
i′=1

Bni,i′Zi′
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Bi,i′Zi′

∣∣∣∣∣∣
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ai +

I′∑
i′=1

Bi,i′Zi′

∣∣∣∣∣∣
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i
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∣∣∣∣∣∣
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(
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)
Zi′
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≤ ε+ IEmax

i

I′∑
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∣∣Bni,i′ −Bi,i′ ∣∣ · |Zi′ |
≤ ε+ max

i,i′′

∣∣Bni,i′′ −Bi,i′′ ∣∣ I′∑
i′=1

IE |Zi′ |

≤ ε

1 +

I′∑
i′=1

IE |Zi′ |

 .

Since the random variables Zi′ are i.i.d. and integrable, we have IE |Y n − Y | → 0 as
n→∞.
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